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Major Accomplishments

I

6.

Developed a program instrumentation and simulation facility, MaxPar, that can measure
the maximum inherent parallelism in application programs and also can measure the
effectiveness of various parallelizing compiler techniques.

Developed parallel simulation kerncls on the Alliant FX/8 parallel computer based on a
conservative (Chandy-Misra) and optimistic (Time Warp) event-driven models.

Developed a parallel simulation kernel, PARSIM, on the Alliant FX/8 parallel computer,
that employs a hybrid time- and event-driven model to speed up simulations. PARSIM will
also run on uniprocessor machines such as high-performance workstations.

Designed and implemented a high-level language CARL (Computer Architecture Rescarch
Language), which is based upon C and is used for writing simulators.

Developed preprocessors to translate CARL into C and C++ code. The resulting code can
be compiled with a standard compiler to allow the simulations to be carried out either on a
workstation or on a parallel computer such as the Alliant FX/8.

Developed a high-level graphical interface to assist in simulator configuration and to run
suites of benchmark executions on the Chief simulators.

Developed a bitmapped graphical interface for PARSIM, PARSIM-UI, that allows a user to
display and control the state of the simulation. Its operation may be customized with an
interpreted language to display simulation-specific  information according to user
preferences.

Developed a data display tool that plots the results of simulation runs on a bitmapped
workstation,

Implemented two pilot parallel simulators on the Alliant FX/8. They can run a FORTRAN
program suite through a parallelizing compiler to generate parallel traces. In one case, the
resulting traces drive the simulation of a shared-memory multiprocessor system with a
multistage shuffle-exchange network. In the other case, the traces drive the simulation of
an eight-processor system similar to an FX/8 system.



1. Chief Project Overview
Chief is a parallel simulation environment for studying parallel systems. Figure 1 shows its
hasic structure.
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Figure 1 — Chief Project Overview

Parallel systems are studied by creating simulators and driving those simulators with
benchmark programs. These benchmark programs are restructured according to the architecture
of the target system, and parallel traces are created.

A simulator for the target system is constructed from the architecture specification. The
core of the simulator is a simulation kernel (based upon one of three paradigms). The simulator
includes a powerful bitmapped window interface that provides the user with a complete view of
nd control over the execution. The user can vary a set of parameters to the simulated system.
The simulator is driven by the parallel traces described above.

Statistics are collected during simulation runs. The Chief environment provides tools to
cxamine these statistics and plot their values against the simulation parameters.

A separate tool, MaxPar, can be used to instrument programs to measure the maximum
inherent parallelism within them. The results MaxPar generates are an upper bound on the
available parallelism, and can be used to evaluate the cffectiveness of the restructuring compilers
and simulated system.



2. Simulation Facilities

2.1. Execution-driven Simulation: MaxPar

MaxPar is an execution-driven parallelism profiling and extraction facility. It instruments
an application (such as a Perfect Club! benchmark) to collect statistics based upon the actual
cxecution of the program. It can determine the inherent maximum paralielism of an application
program and the optimal parallelism of the program with system constraints (such as the number
of processors, storage-related data dependences, and the synchronization overhead). MaxPar can
locate the bottlenecks in the program. Finally, MaxPar can generate parallel execution traces for
the program.

MaxPar instruments an application program to record timing and scheduling information
for cach data object, where a data object is either a scalar variable or an array element. To store
this information, MaxPar associates additional variables, called shadow variables, with each data
object. For each variable X, the read shadow irX records the last time X was read and the write
shadow nvX records the last time X was written. Given the operation

C=AopB

where C, A, and B can be scalar variables or array clements, and the op can be any arithmetic or
lngical operator, then the equations used to update the shadows are:

mwC = compute_time(op) + max(twC, irC, twA, iwB)
trA = max(trA, twC)
irB = max(oB, mC)

When a data object is read, its write shadow is checked to determine the earliest possible
time for the read operation to proceed. The read can proceed only after the previous write has
completed. If the read and write are {from different processors, the overhead resulting from data
synchronization is computed. The read shadow is then updated to that time. When a data object
is written, both its read shadow and its write shadow are checked to compute correct timing and
to perform any necessary synchronization.

MaxPar also takes other system features into consideration. The number of processors in
the target system may be specified as a finite number or may be infinite. Parallelism may be
measured at one of four levels of granularity: operation-level, statement-level, loop-level, or
subprogram-level.  MaxPar can  also tnke into account scheduling schemes and the
synchronization overhead for data synchronization and barrier synchronization. The anti- and
output-dependences of a program can be climinated by an optional dynamic storage allocation
«cheme. MaxPar can compute the amount of additional storage required to achieve this ‘‘pure”
data-flow type of execution.

MaxPar instruments the application program, producing a new source program. This is
compiled on the host machine, linked with runtime libraries, and executed. The program
produces computationally correct answers. In addition, it produces an execution profile by
counting the number of operations that can be exccuted at each time instance. A parallel trace
can also be generated. Figure 2 shows the profile of a 512-point fast Fourier transform. The
nine ‘‘peaks’’ represent the high parallelism present at the start of each phase of the FFT. The
plot does not include the first part of the program, which performs initialization. The parallelism
in this example is measured at the loop level with an unlimited number of processors and with
no overhead due to scheduling and synchronization.
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Figure 2 — MaxPar’s Exccution Profile of a 512-point FFT

2.2. Parallel Simulation Kernels

A Chief simulation consists of a group of modules interconnected by nets. A module
encapsulates some function, presenting it to the “outside world”’ through a set of inputs and
outputs. The inputs and outputs of the modules within a system are connected together by nets.
The inputs and outputs may be scalars or arrays (with a maximum of three dimensions), the size
of which can be specified during runtime configuration. Modules may be implemented directly
15 a set of low-level functions that directly read values from input nets and write values to output
nets. Alternatively, modules may be constructed from other modules. The simulation is
implemented as a hicrarchy of modules. The root of the module hierarchy is the simulation
itself. Many common low-level modules will be provided in a simulation library.

In order to reduce the time required to simulate large parallel systems, Chief provides three
different parallel discrete event simulation (PDES) kernels. Simulators built with these kernels
<hare a common user interface, and a single language is used to write code for all three
simulation paradigms.

The PDES kernels include a conservative approach (based upon the work of Chandy and
Misra?), an optimistic approach (based upon the Time Warp® technique), and a approach that
employs a hybrid of time-driven and event-driven techniques (called PARSIM, for parallel
simulator). Tt is well known that the performance of these PDES approaches is problem- and
application-dependent. By providing all three simulation kernels with a single user interface and
simulation language, Chief gives users the ability to write one simulator specification and select
one of the three approaches at compile time. All three approaches are currently implemented on
an Alliant FX/8 system. In addition, PARSIM is also implemented on uniprocessor Sun
Microsystems machines.

The usci describes each simulation component and the interconnection of components that

forms the system. The component definitions arc written in the language CARL (described in
section 3). Two kinds of components can be defined: behavioral components and hierarchical
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components. Behavioral components are described by defining their local state, their inputs and
ouputs, the actions that should be taken when one or more of their inputs change, and the
initialization that should be performed when the simulation starts or is re-executed. Hierarchical
components are described by defining the subcomponents that constitute them and the manner in
which subcomponents are connected to one another and to the inputs and outputs of the
hicrarchical component.

A Chief simulator is constructed from a collection of these component definitions. The
construction stage comprises two independent phases: the translation phase and the code
generation phase. During the translation phase, the component definitions are translated into C
structures (for PARSIM) or C++ classes (for Chandy-Misra and Time Warp) that define the
various types of the participating components. The data members of each C structure or C++
class represent the state associated with the respective components in the simulation.

For Chandy-Misra and Time Warp simulations, the function members of the C++ class
constitute the set of routines needed to simulate the respective components. The system is
represented as a collection of logical processes, each of which simulates a component and
communicates with other components. Each logical process is the set of member functions
detined in its class. An important goal of the construction stage is to to minimize the
communication overhead and maximize the potential parallelism in the execution of the
simulation. To achieve this goal, we partition the logical processes into sets and assign the
simulation of each of these sets to a processor. This assignment is achieved by generating
appropriate code to be executed by each physical process.

For PARSIM simulations, the structure definitions are created in a header file and the
cxecutable routines that simulate the component are created in a separate code file. The code file
is compiled along with the header files of its own component and any included subcomponents
to create an executable module. A complete simulation consists of a Jinked set of of simulation
maodules.

‘The execution of the simulation is the final stage of the simulation process. The Chandy-
Misra and Time Warp paradigms are based on the exchange of messages to convey information
from one component to another. Chandy-Misra also incorporates a means for avoiding
deadlock. The machine on which we are developing this tool (an Alliant) is a shared memory
machine; therefore, instead of using actual messages we use shared memory to convey
information and (in the Chandy-Misra case) to avoid deadlock. By doing so we reduce the cost
associated with the use of messages. Each component, for which there are events to simulate is
extracted from the ready queue maintained by each physical process, and is simulated on the
outstanding events. When there are no more events 1o simulate it is blocked waiting for new
events (messages) to arrive, and control is transferred to another ready logical process. This
cvele is repeated until all components have been simulated up to a certain (virtual) time, which
has been defined by the user as the End_of_the_simulation_time.

PARSIM employs a combination of the time-driven and event-driven approaches to
cimulation. PARSIM maintains a system event queue that is a time-ordered list of event lists.
Fach sublist contains events that occur at the same simulation time. PARSIM also maintains
event quetes for each of the nets affected by clock-induced events.

PARSIM executes events in groups. It dequeucs the first list of events from the system
event list. Then, in parallel, it evaluates these events, resulting in new values being assigned to
nets. Each component that is affected by the change in the nets may specify an ‘‘action routine’’
that updates that components status. PARSIM makes a list of all of the action routines that must
be processed. After all of the nets have been updated, all of the action routines are evaluated in
parallel. These routines may, in turn, post additional events to the global event queue.
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3. CARL — Computer Architecture Research Language

The Chief project provides three different paths by which simulators can be constructed,
according to the PARSIM, Chandy-Misra, and Time Warp paradigms, respectively. Although
the simulation techniques are different, in all three cases the simulated system is specified as a
connected set of hierarchically-defined components.

Components are written in a semi-abstract language called CARL. The use of this
language frees the component designer from the need to know the low-level details of the
various implementations. More importantly, component definitions written in CARL can be
incorporated into any of the Chief simulators simply by using an appropriate preprocessor to
convert CARL code to C (for PARSIM) or C++ (for Chandy-Misra and Time Warp).

A component description in CARL consists of sections of C-like code headed by CARL
keywords. The keywords are COMPTYPE, INPUTS, OUTPUTS, SUBCOMPONENTS, VAR,
ACTION, INIT, STRUCTURE, BEGIN, and END. The COMPTYPE, INIT, STRUCTURE,
BEGIN-END sections contain executable statements modelling a component’s behavior and
specifying its internal structure.

#define ADD
#define SUB
#define AND
#define OR

WNRO

COMPTYPE Alulé6 (speed)
int speed;

INPUTS
short in[2]: alu_eval;
char op: alu _eval;

OUTPUTS
short sum;

VAR
int Speed;

ACTION alu_gval

switch (op) {

case ADD:
gum = in[0] + in[1] after Speed;
break;:

case SUB:
sum = in[0] - in[1l] after Speed;
break;

case AND:
sum = in[0] & in[1] after Speed;
break;

case OR:
sum = in[0] | in[1l] after Speed;
break;

}

BEGIN
Speed = speed;
END

Figure 3 — CARL definition of a 16-bit ALU
Figure 3 shows the CARL definition of a simple ALU, capable of performing four

operations upon its two 16-bit inputs. The component, whose type is Alulé, has one
parameter: the delay between a change to its inputs and a ncw value on its outputs:
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~ The Chief project includes (w0 preprocessors. PSPP, the PARSIM Preprocessor, converts
CARL into C. PSPP is a compiled program that uses the tools ““lex’” and “‘yacc’” to read CARL
programs. It generates two files: a header file that defines PARSIM data structures and a C code
file that contains module creation, connection, initialization, and action routines. The host
machine’s C compiler will convert the code files into object modules that can be linked with the
PARSIM runtime libraries and user interface to form a PARSIM simulator.

C2CMTW, the CARL *“2”° Chandy-Misra/Time Warp preprocessor, converts CARL into
Ci++. C2CMTW, like PSPP, is an exccutable program. It generates two files: a header file that
detines C++ classes for each component type and a C++ code file that contains the definitions of
the class member functions. The host machine’s C++ compiler will convert these files into
object modules that can be linked with either the Chandy-Misra runtime libraries or the
Time Warp libraries to creatc a simulator.

4. Ul — PARSIM User Interface

‘The PARSIM user interface (PARSIM-UI, or simply UI) displays information in bitmapped
windows using the X11 window system. It provides control facilities for starting, stopping,
continuing, and breakpointing simulation runs. Nets can be viewed graphically. By creating
ceveral windows, the user can interact with the simulation from multiple contexts.

The core of PARSIM-UT is an execution engine that parses and executes commands written
in a simple language. The graphical interface *‘wrapper’’ accepts input in the form of menu
selections, button presses, etc. and transforms it into commands that are interpreted by the
engine. The user-interface language is also directly available, so that the user can customize his
or her debugging scssions as necessary.

PARSIM-UI can directly access objects in the simulation system: components, inputs,
outputs, and nets. It also provides and operates upon simulator variables. Variables may contain
integer, floating-point, or string values, or may contain one of three special typed values: error,
high-impedance, and unknown. Their type is dynamic — an assignment to the variable sets the
tvpe as well as the value. The value of an uninitialized variable is the integer zero.

A set of operators combines components, nets, variables, and literal constants into more
complex expressions. An expression may be used whenever the PARSIM user interface expects
a value. In particular, an expression may be used within a component or net array subscript.
Function calls may also appear within expressions. I'hey are called using the syntax

function_name (args)

where function_name is the function name and args is a comma-separated list of expressions that
represent the arguments to the function. The number and type of arguments are function-
specific. PARSIM-UI provides a set of standard built-in functions, which provide access to the
simulation state. Users can define additional functions.

The primary interface to PARSIM-Ul is graphical; however, in recognition of the fact that
text input is sometimes necessary, macros can be used to hid some of the programming-language
appcarance from the user. A set of built-in macros is provided. The user may define any
number of new macros and is free to redefine the built-in macros if he or she so desires.

The PARSIM-UI language provides primitives for grouping, iteration (WHILE),
conditionals (IF), function definition, and macro definition. The syntax is vaguely similar to
Algolor C.

PARSIM-UI provides a powerful breakpoint facility. Breakpoint conditions are expressed
as an arithmetic expression and therefore may depend upon nets, constants, and variables. This
provides great flexibility; for instance, it is possible to check if the currently-addressed register
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in a register file is zero or if the values of two registers are equal. When a breakpoint condition
is satisfied a second expression (the breakpoint ‘‘action’’) is evaluated. The action may include
stopping simulation after the current simulation time step, but it need not do so. Other possible
actions might include printing a message, updating a display, or collecting statistics in a counter.

The user may display any subset of the simulation state by defining one or more
awtodisplays.  An autodisplay is a window that continuously displays sets of expressions.
Effectively it is a snapshot of a uscr-specificd subset of the current simulation state.
Autodisplays allow the user to create views of collections of nets and to watch them change as
the simulator executes. They are updated each time that the simulator stops (e.g., due to a
breakpoint) and at other times as directed by the user or breakpoint definitions. The appearance
of an autodisplay window is primarily under the user’s control.

The contents, format, and location of all autodisplay items are user-configurable. The fields
within an autodisplay can be moved and resized using the mouse.

PARSIM-UI can save any part of its user interface state to a file. Thus, the definition of
one or more autodisplays, breakpoints, functions, macros, andfor variables can be preserved
from one simulation run to the next. This gives the PARSIM-UT user significant control over the
configuration of his or her environment and makes PARSIM-UT a powerful tool for debugging
and running simulations.

5. Parallel Trace Generation Facilitics

3.1. Optimal Parallel Traces (MaxPar)

MaxPar can produce an optimal parallel trace by instrumenting a program at the source
code level with tracing instructions. The traces that arc generated when the program is executed
arc optimal in the sense that they reflect the best possible parallelism within a prograny
therefore, they can provide an idealistic performance upper bound for the program. The
‘nformation in this trace is independent of the machine architecture and the parallelizing
compiler.

2.2, Symbolic Parallel Traces (Parafrase)

Symbolic parallel traces are used for generic shared-memory systems with an optional
vector processing unit in each processor. The sct of traces generated can be targeted toward a
particular machine organization such as SIMD, MIMD, etc. It provides users with a good mix of
realistic computer architecture characteristics, and also allows them to specify particular
characteristics of their own machines. For example, a user can specify the number of processors
in the system, the scheduling scheme, the data layout in the shared memory, etc. The resulting
parallel traces reflect the possible parallelism that can be obtained by a parallelizing compiler as
opposed to the maximum paratlelism that can be obtained using MaxPar.

Parafrase-based parallel trace generation consists of three steps:

I Generate program intermediate form. The syntax and the semantics of the intermediate
Janguage resemble an assembly language for a vector multiprocessor. The output is
generated for each subroutine scparately. An infinite number of symbolic registers is
assumed for the system.

Link and load modules for execution. This resolves symbolic references, processes
parameter passing, lays out common blocks, determines which data is global and which is
local, and produces a load map.

™~

3 Execute the load modules symbolically. ‘This step simulates parallel execution of the load
modules and produces time stamps for instructions accessing memory. The result is a
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memory reference trace that can be used to drive multiprocessor simulators created by the
Chief tools.

5.3, Alliant FX/8 Traces

Alliant supplies an emulator for the FX/8. Programs are compiled with the parallel Alliant
Fortran or C compiler. The resulting object modules are linked with runtime routines to create
executables. These are then emulated to produce Alliant-specific memory reference traces. The
programs produce computationally correct results, and the traces are a very realistic reflection of
the program’s parallel behavior. However, because the traces are machine-specific, they cannot
be made to accomodate a memory hierarchy or a configuration consisting of more than eight
Processors.

6. Data Visualization Tool

The Chief visualization tool plots data for display on a bitmapped workstation. The data is
collected from a suite of simulation runs in which simulation parameters are varied from run to
run. The data from each run is stored into a file. A separate description file identifies all of the
data items. The visualization tool reads the description file and all of the data files. The user can
plot any data item against any simulation paramcter while constraining the values of other
simulation parameters.

7. Top-Level Chief Environment

All of the Chief tools are assembled into a top-level bitmapped environment. The
environment guides the user through the creation of a simulator from a set of components stored
in a component library. More than one version of some components may be archived, so the
environment allows the user to view the current sct of components and select the desired version
for each one. Each component contains a set of parameters that control its behavior. The
environment extracts a complete list of parameters from the specified components and provides
mouse-driven tools that allow the user to specify new parameter values.

The environment provides a simple interface that allows the user to specify a set of
compiler parameters, compile a benchmark, and generate a trace file. The editing of compiler
parameters is similar to the editing of simulation parameters. In addition, the environment also
allows the user to invoke MaxPar to analyze the parallelism within the benchmark.

When instructed to build a simulator, the environment will invoke the appropriate Chief
preprocessor for each component definition (written in CARL), will invoke the system compiler
to create object files for all components, and will link those object files with the appropriate
kernel and user interface libraries. A simple command will execute the resulting simulator.

The power of the Chief environment lies in its ability to execute a suite of compilation and
simulation runs while varying the input parameters. The user specifies a set of values for each
parameter, and the environment will automatically compile the benchmark to produce a trace
file, build the simulator, and invoke the simulator with the trace file as input. The output from
cach simulation run will be written to a scparate file. The user can then use the Chief
visualization tool described above to display these results graphically.
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8. Pilot Simulations

Two simulators have been developed to demonstrate the utility of the Chief environment.
First, the simulations can be run in parallel, resulting in fast execution time. Furthermore, the
simulations are written in CARL, which is extremely modular, allowing faster initial code
development. This allows component models to be replaced much more easily than in dedicated
simulation programs.

8.1. Cedar-like System Simulator

A simulator has been developed to simulate the Cedar global memory system4’5. It consists
of models for the Omega networks, the global memories, and a simple processor. The simulator
i< driven by traces of Fortran programs gencrated by Parafrase. It allows different system
configurations to be simulated by changing the size of the system and the size and configuration
of the network switches, and by replacing the switch and memory component models to test,
¢.¢., different internal buffering configurations.

The system model is a simplification of Cedar, in that processors are not clustered as in
Cedar. Furthermore, the current processor model does not simulate the effects of caching or
cluster memory. Some of these effects can be accommodated by changing the way traces are
gathered by Parafrase. More advanced processor models are also under development.

8.2. Cedar Cluster Simulator

A simulator has been developed to simulate a Cedar cluster. 1t consists of models for the
caches. the cluster memory, and eight simple processors. Traces created by the Alliant FX/8
emulator drive the simulation.
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Abstract

This report summarizes the status of the Delta Program Manipulation System [Pad89]
project at the expiration of its initial project development grant. Included are a review
of the project’s objectives and surveys of the program manipulation tools developed, the
environmental software supporting Delta, and the compiler research projects in which
Delta has played a role. An appendix describes the Delta system in detail.

1 Objectives

FOoRTRAN 77 programs are portable to many computer architectures. But the program
characteristics that yield the best performance vary from machine to machine. The com-
mon goal of researchers in automatic restructuring is to capture and preserve the meaning
of a program while varying the program structures that most influence its speed and ef-
ficiency on different computer systems. Although a number of commercial and research
program restructurers have been written, the cost of exploring new techniques or optimiza-
tion strategies is still extremely high.

The Delta Program Manipulation System{Pad89] is an open system of tools and compo-
nents and a workbench environment for developing new compiler techniques in automatic
program restructuring. Included are: a FORTRAN parser; an extensive repertoire of opera-
tions and data structures common to vectorizing and parallelizing compilers; and the tools
and methodology needed to generate and test new compilation methods and strategies. We
believe that this approach can reduce the cost of research and development for advanced
compilers in the same way that domain-specific languages (e.g. Mathematica) have reduced
the cost of problem solving in other technical fields.

Openness An ‘open system’ is one which exposes its component parts for modification,
replacement, or reuse in new contexts. Several factors contribute to the openness achieved
in Delta.

“This work was supported by the National Aeronautics and Space Administration and the Defense Ad-
vanced Research Projects Administration under Grant No. NASA NCC 2-559. Part of this work was carried
out by James R.B. Davies.
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¢ The implementation language (SETL) is very high level. This means the amount of
text invested in any one design commitment tends to be small, and thus manageable.

¢ An ‘applicative’ programming methodology has been followed in which components
are relatively insensitive to the context in which they are used.

e The central data structures in Delta are labelled maps. Because they are self-docu-
menting and flexible, they are easy to use in new ways, or modify for new uses.

e Environmental software has made the SETL source of Delta ‘content addressable’.

In the following sections we will describe parallelization and illustrate Delta’s program
manipulation tools, then survey the environmental software supporting Delta and the com-
piler technology research at CSRD in which Delta is beginning to play a part. Appendix A
gives a detailed description of the Delta system.

2 Programs and Manipulations

Delta operates on FORTRANT7 programs. To make them tractable, they are represented
internally as abstract syntax trees that supress the lexical and syntactic quirks of FORTRAN.
In SETL, data objects can share storage under a discipline of ‘copy-on-write’. Each FORTRAN
program appears to be a separate SETL data object. Delta transformations take FORTRAN
programs as ‘call-by-value’ arguments and deliver revised programs as results. Memory
requirements do not multiply since only the few substructures which change need new
storage.
Internally, Delta breaks a program into its:

o Imperative statements

¢ Symbol table ¢ Initial data values
¢ Applicative expressions

¢ I/0 format specifiers ¢ Common storage layout
e Storage equivalences

Each substructure collects and indexes one class of program components. The component
descriptions are collections of named attributes. Some attributes link components together
(by their names or indices) into semantic networks. Delta works by discovering and deriving
facts about the program’s behavior when it is executed. Facts are added to the tree both
as new top level structure and as annotations to low level components.

An executing FORTRAN program produces a sequence of stores into memory cells, refer-
ences to stored values, and calculations creating new values. The program’s text may refer
to one storage cell in many different ways. The cells of an array are identified by subscripts
which are integer arithmetic formulae. Symbolic algebra and Diophantine analysis can be
used to test whether two subscript formulae ever intersect. Where they do, the two uses of
that array may involve the same storage cell. Such a pair, where at least one storage action
is a write, forms a data dependence and requires that the two memory references occur
in their original order.

The sequencing of storage actions is captured in data dependence graphs, a control flow
graph, and a subroutine call graph. The graphs summarize how the parts of the program
cooperate to achieve its net result. These graphs are examined before most program changes
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to verify that the transformed code will be equivalent to the original. As the program is
changed, these graphs are updated or regenerated to reflect the current organization of the
program. The incremental cost to do this is small because optimizing transformations tend
to preserve most storage relationships.

Parallelism can be recognized in a sequential program as a pattern of data and control
independence. Parallelizing is the process of producing these patterns by modifying loop
structure, introducing auxiliary storage cells, and reorganizing calculations to avoid small
cycles of dependence which can only be supported by serial loops.

Today the Delta system includes sufficient preconditioning, analysis, and transformation
components to parallelize and restructure many example programs. It can permute the
nesting order of a collection of loops, distribute loops into vector form, or split them into
parallel and serial pieces. It can normalize them, stripmine them, or reverse their iteration
spaces. It recognizes scalar inductions carried by a single loop, scalar variables local to a
single loop, summations, and DOALLs.

In the next half year we will extend Delta’s parallelization techniques by collecting
dependence cycle breakers: particular transforms, triggered by the appearance of a circular
path in the data or control dependence graph, and designed to break the cycle. Some of these
cycles are easily broken by recognizing which variables are loop invariant, linearly varying,
or localizable. Such properties of a loop are discovered by the preconditioning passes already
built for Delta and appear as annotations to the internal program representation for later
passes to use.

3 Environmental Support

3.1 SETL

For now, any serious user of Delta must become a SETL programmer. Fortunately most
programmers can intuit the basic principles of SETL by imagining a cross between Algol
control constructs, Set Theory notation, and Lisp recursive data structures. A key to the
power of SETL is the flexibility of sets and tuples for representing data structure. It is
especially important for Delta programmers to understand maps. A map is a set of ordered
pairs (i.e. 2-tuples). SETL allows a map to be applied to an argument like a function; the
result is the second element of the ordered pair whose first element matches the argument.
For example, if we create a map from the first four integers to their names:

> number_to_name := {[1,"one"], [2,"two"], [3,"three"], [4,"four"l};
then we can use this variable like a function:

> number_to_name(1);
llonell .

If the argument is not in the domain of the map (i.e. the set of first elements of the ordered
pairs), the mapping operation returns ‘OM’. If more than one ordered pair has the same
first element, then the map is referred to as multi-valued. A special form of the mapping
operation, using curly braces instead of parentheses, will return the set of all second elements
of ordered pairs in the map whose first element matches the argument:
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> number_to_name := number_to_name union {[1,"uno"]};
> number_to_name{1};

{"uno”, llonell};

> number_to_name{2};

{"tWO“};

A mapping operation with parentheses is illegal for members of the domain with multiple
values. The test for this error occurs at runtime. The choice of which algorithm to use to
perform the mapping is also made at runtime. Very little of SETL’s syntax is devoted to
specifying implementation details. Runtime choices are expensive. They are avoidable in a
commercial restructurer, but are welcome in Delta because they reduce the amount of text
that must be changed to revise a design choice.

3.2 Interactive Delta

A typical Delta development session might start out as follows. First the interpreter is
started and it reads all of the Delta source code:

shell’, idelta

DELTA Program Manipulator Last update: Feb 14 16:09
(c) 1991, Board of Trustees, Univ. of Illinois (CSRD)
ISETL 2.0 Last updated on 89/12/12 at 13:18:09.

(c) Copyright 1987,1988,1989 Gary Levin

Enter !quit to exit.

50080, New Limit = 4000000
3996384, Limit = 4000000

Current GC memory
Current GC memory

> matmul := read_program('matmul.f");
> display_program(matmul);
SUBROUTINE MATMUL(A,B,C,N)
S2 p0oI=1, N, 1
S3 poJ=1, N, 1
sS4 X=20.0
S5 DOK=1, N, 1
s7 X = X+B(I,K)*C(K,T)
S8 ENDDO
S10 A(T,]) = X
Si1 ENDDO
S12 ENDDO
S13 RETURN
END
OM; ’

Function read._program invokes the Delta scanner (a separate program, written in C) on its
filename argument. The scanner produces a SETL data structure that completely describes
the program. Read_program loads this structure as a variable within the iSETL session,
annotates it with its control flow graph and variable cross reference, and returns the whole
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package as its functional result. Here we assigned it to the variable ‘matmul’. A call to
display_program lists out the executable statements of ‘matmul’ in FORTRAN form.

The >’ is an iSETL prompt; a statement typed here will execute and have its value
printed. The value of display _program was undefined, which SETL treats as a constant
called ‘OM’ (for Omega or omitted). We can begin to examine matmul as a SETL map by
asking:

> domain(matmul);
{"statements", "initial_statement", "final_statement",
"expression”, "loop_info", "routine_type", 'symtab"};

In more complex programs we might also see substructures for "common blocks", "equi-
valences", and other FORTRAN features.

Compiler authors rely on utility functions to abbreviate most data accesses. For ex-
ample, one query function in Delta is called stmts_of _type. It returns a tuple of names of
statements of a given type, in the order that they appear in the program. If lexical order is
not important, the raw SETL needed to acquire the same subset is almost as brief:

> stmts_of_type(matmul,"D0");

["52", "33", "SS“];

> all_stmts := matmul("statements");

> { stmt : attr = all_stmts(stmt) | attr("st") = "DO" };

{"32”, nssn’ ussn};

At the top level of compiler construction, transformation and analysis functions are
more common. Here we have composed many Delta steps into a ‘precondition’ function,
which returns a heavily annotated version of its argument. We then apply an experimental
vectorizer to the annotated program and put the parallelized result into a separate iSETL
variable called ‘matmul_vector’.

> matmul_vector := tiny_vectorizer (precondition (matmul));
S2 is a DOALL

S3 is a DOALL

S5 is a summation

We have chosen to express parallelism as an annotation to a fundamentally serial program.
Preserving the sequential view of the program’s semantics means that sequential analyses
are still applicable to the transformed program.

> display_program (matmul_vector);
SUBROUTINE MATMUL(A,B,C,N)

S2 DO I =1, N, 1 {DOALL}
s3 DO J =1, N,*1 {DOALL}
54 X =20.0
S5 DOK=1, N, 1 {SuM}
S7 X = X+B(I,K)*C(K,J)
S8 ENDDO

S10 A(I,)) =X

S11 ENDDO



512 ENDDO

S13 RETURN
END
OM;
> print_graph(matmul_vector, "S5", OM);

Output Dependence with Direction [=, =, <] from S7[26]: X <to S7[26]: X
Flow Dependence with Direction [=, =, <] from S7[26]: X to ST[27]: X
Antidependence with Direction [=, =, <] from S7[27]: X to S7[26]: X

OM;

On the other hand, most restructuring transformations also modify the serial program.

Changes to the lexical and control flow graphs are evident in the program display.

> display_program (stripmine (matmul_vector, "S3", 32));
S3 stripmined into [S3, ST2]
SUBROUTINE MATMUL(A,B,C,N)

S2 DO I =1, N, 1 <{DOALL}
S3 DO J1 =1, N, 32 {DOALL}
ST2 DO J = J1, MIN(N,31+4J1), 1 {DOALL}
S4 X =0.0
S5 DOK=1, N, 1 {SUM}
S7 X = X+B(I,K)*C(K,J)
S8 ENDDO
S10 ACT,I) = X
ST3 ENDDO
S11 ENDDO
512 ENDDO
S13 RETURN
END
0M;

An interactive Delta session allows a compiler developer to explore potential algorithms
by !include’ing experimental software and watching its effects on actual programs. The
growing repertoire of transformers, instrumenters, program analyses and displays make the
interactive system a versatile laboratory for developing new compiler technology.

Using iSETL within Delta

Delta uses maps (and occasionally multi-valued maps) where other compilers would use
structured data. For instance, each FORTRAN compilation unit is a map. When we ask for
matmul(*'statements"), the result is a map from statement names onto other maps that
describe the attributes of each statement. For example the right hand side of the assignment
in statement S7 is: 7

> format_expr(matmul, matmul("statements") ("S7") ("rhs"), true);
"X+B(I,K)*C(K,)";

Another statement attribute is its FORTRAN type (spelled "st"). To explore the concept
of SETL maps, let’s quickly build, and then display, a map from statement names directly
to their type:
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> stmt_types:= {[s, attr("st")] : [8,attr] in matmul ("statements'")};
> stmt_types("S1");
"DOH;

Here s and attr are iteration variables; they become bound to the elements of each ordered
pair in the statement map of matmul. Attr is the map of the attributes of statement
s; attr("st") is the one we we need. As s and attr iterate over all the statements,
{[s,, attr,("st")], ...} becomes a set of ordered pairs: a new mapping.

SETL can iterate over maps, sets, or tuples to form other maps, sets, or tuples, or to do
more traditional forms of data processing. In the following (truncated) example, the ‘>>’
prompt indicates that iISETL is waiting for more text in a syntactically incomplete construct
(in this case a conventional ‘for’ loop).

> for t=stmt_types(s) do

>> writeln s," is ", if t(1) in "AEIOU" then "an "else "a "end if, t;
>> end for;

S12 is an ENDDO

S13 is a RETURN

S4 is an ASSIGNMENT

52 is a DO

S1 is an ENTRY

A SETL Extension: @fieldname

Since we make such extensive use of strings in the domain of maps, we have extended iSETL
to streamline the syntax for mapping strings. The syntax resembles function composition:
QxxxQyyy [z] finds the location "xxx" in the map called "yyy" in the map stored in variable
z. This notation may be used for both storage to and retrieval from a hierarchical dataset.

> ©@stQ@S4Q@statements[matmul];

"ASSIGNMENT";

> stmt_types:= {[s, @stl[attr]] : [s,attr] in @statements[matmull};
> Q@S2 [stmt_types];

I'DO" ;

3.3 Batch Processed Delta

ISETL is not the fastest implementation of SETL. Production runs of Delta on large programs
are not practical using the public domain interpreter that makes development so easy. To
overcome this problem, We acquired the SETL2 compiler from Courant Institute[Sny90] for
our workstations. In many cases, the compiled form of Delta has proven to be between 4
and 20 times faster than interactive iSETL interpretation. This enables us to process the
entire Perfect Benchmark suite through a Delta experiment as an overnight batch job.



iSETL — SETL2 conversion

The SETL2 compiler and iSETL interpreter differ in many interesting respects. We have
avoided substantial parts of both languages in an attempt to keep a single source code for
Delta in a fairly standard core dialect. The remaining differences are bridged by writing in
a subset of iISETL and converting iSETL to SETL2 before compiling. The custom conversion
program written for this purpose does an excellent job of preserving indentation, vertical
alignment, comments and other ergonomic aspects of the code. This has left open the option
of converting to SETL2 as the primary development language.

main := func(args);

This is the main program for Delta. ‘Args’ is a tuple containing the parameters passed on
the command line.

The iSETL interpreter is the ‘main’ program for an interactive session, but compiled
code needs a preprogrammed sequence of commands. So far each experimenter has written
a custom version of ‘main’ to carry out the desired tests. Some speculation has gone into
the design of an interactive front-end for compiled Delta, either an interface to a source
browser cum editor, or a SETL2 interpreter. While this issue is ultimately important in
building the Delta user base, it has so far taken a back seat to the construction of basic
transformation tools.

3.4 Version Control

The Delta program source resides in a production directory with a full audit trail, and
represents a useable release of the Delta system. This serves as a backbone for independent
development directories kept by several project programmers. The contents of a develop-
ment directory are overlayed on the current production directory to produce experimental
releases. In support of this, two scripts have been written (idelta and cdelta) to produce
the composition of a developer’s private directory with the public production directory and
invoke either the iSETL interpreter or the SETL2 compiler on the result.

In addition special checkout and checkin scripts allow developers to move files between
their directories and the production directory. These scripts check for potential conflicts
between a known group of developers. They also maintain the audit trail and backup copies
of recent work.

3.5 Cross Reference

A system is only “open” insofar as its components are easy to locate, understand and
reuse. To enhance this quality of the Delta project, several tools have been added to the
SETL programming environment. Together they provide an interactive cross-reference to
the Delta project source files, fully integrated with the Gnu Emacs editor. The components
of this system are:

A SETL editing mode teaches Emacs enough about the lexical structure of SETL to
make its cursor motion, editing, and search commands recognize token boundaries.



A Tagsfile generator builds a catalogue of source locations where SETL identifiers are
given new definitions. The tagsfile locates all statically recognizable definition sites using
the various forms of declaration and side-effects in the iSETL dialect used in the Delta source
code. A single tagsfile covers the whole Delta source. The file adheres to an Emacs format
previously used for Fortran, C, yacc, and Eye.

The Gnu Emacs Tags functions have been enhanced to support structured code walk-
through. While editing any part of the Delta source it is now easy to visit all definitions
or uses of any function, variable, or field name. A stack of return locations is kept so
that when the identifier’s meaning has been sufficiently explored (or modified) the editing
session can return to the spot from which it first departed. The return stack includes
the remaining itinerary of any searches currently in progress. By directly modelling the
call /return discipline this package supports code walk-through and makes it easy to validate
changes to the code.

The Call Graph: One feature of an “open” system is the ability to replace lower level
components to change the detailed behavior of higher level actions. Of course, the replace-
ment must fill the needs of all its higher level callers. A call graph is a summary of
component interrelationships that can be used to locate call sites of a given component.
The tagsfile generator can also produce the call graph for a collection of iSETL modules.
Module relationships can also be abstracted. Observing and quantifying the cross-module
references has led to better choices about module boundaries in Delta.

4 Research Involvement

Subscript Classification (Paul Petersen)

One of the ways to improve data dependence information is to expand the applicability of
the dependence tests to a larger percentage of the potential dependences. Classifying the
sources of the unknown dependences is useful in determining where further effort may prove
beneficial.

One experiment examined all of the unknown dependence arcs in a benchmark suite and
categorizing them based on the type of coefficients of the loop indices. In each category the
precedence was {Array, Variant, Invariant, Numeric}. If two or more different classification
types were present in the same part of the subscript pair, the one with the higher precedence
was chosen. Each group of coefficients was subdivided into four categories based on the types
of their constant terms. By constant term we here mean any additive term not containing
an index variable of some enclosing loop. The following functions were added to the Delta
system:

classify args_tree := func( pgm, ex, invar );
Return a string of 1 character labels which classify a subscript expression:

A=array P=subroutine paramater
C=common variable V=generic variable
F=function X=unknown construct

I =invariant 0 =zero

N=numeric 1 =unity



sort_classify_set := func( res );
Return a sorted character string for the elements of set ‘res’

classify _subscript := func( pgm, s1, expl, s2, exp2, invar );

classify_subscript_pair := func( pgm, sl, expl, s2, exp2, invar, ndirs );
Join the classification sets of each subscript and create a string tag to describe the
dependence pair; record this.

partially_linear := func(pgm, sl, expl, s2, exp2);
Determine if the dependence pair ‘expl’, ‘exp2’ are partially linear with all coefficients
of index variables constant.

Coefhicient Type

Constant | Numeric | Invariant | Variant | Array
Numeric 15722 1079 6 499
Invariant 2908 4940 — —
Variant 29492 3083 73 36
Array 25240 78 — 425

The above table summarizes this analysis. In each category we collected a weighted
count of how many distinct dependence arcs could not be analyzed due to the lack of com-
piletime information characteristic of the category. The weighting factor equals the number
of feasible directions of the potential dependence. The table ranks the most important
sources of unknown dependence as:

1. variables that may be modified unpredictably during a loop,
2. subscripted subscripts,

3. loop invariants whose relation to the other terms in the subscript equations is not
known.

Compilation techniques such as interprocedural analysis, and advanced induction vari-
able recognition can help to reduce the first category. The problem with subscripted sub-
scripts is more challenging and is usually resolved by the user asserting that the subscripting
array is a permutation. Reducing the third category involves more complex analysis and
propagation of known relationships between invariant variables.

Efficacy of Dependence Tests (Paul Petersen)

Despite the popularity of approximate data dependence tests, there has been little empirical
analysis of their effectiveness. One research project{PP90] based on Delta analyzed some
approximate tests including the GCD method and three variants of Banerjee’s test.

¢ To evaluate the accuracy of these test, their outcomes were compared with an exact
integer programming method.

¢ To evaluate their effectiveness, the Perfect Benchmark suite programs were pro-
cessed, one subroutine at a time, through a Delta-based testbed system.
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Two experiments were run using different sequences of dependence tests. Each potentially
conflicting subscript pair was classified as described in ‘Subscript Classification’ above. The
dependence test sequence applies only to subscript equations whose coefficients and constant
terms are known at compiletime. A counter associated with each dependence test was
incremented whenever that test was the first to detect independence. For Banerjee’s tests
and the integer programming test the increment was 1. The Constant, GCD, and integer
programming test counters were incremented by the number of distinct direction vectors
of the potential dependence since their results cover all dependences between the subscript
pair. Counting in this way, the weight of each potential dependence grows exponentially
with its level of nesting within DO loops.

Each of the two experiments consisted of two parts. The first part used the loop limits as
they appear in the source program. In this case, the Banerjee Rectangular and Trapezoidal
tests and the integer programming test do not apply to all loops since they require that
the limits be known at compiletime. For the second part we assumed an arbitrary constant
lower and upper loop limits and unit stride.

Did ‘knowing’ the loop bounds help much? The Banerjee Rectangular Test became more
effective by 8.64%, but at the same time the Banerjee Infinity Test is reduced by 8.37% for
a net gain of 0.27%. The reordering of the dependence tests between runs also illustrated
that only 0.53% of the analyzable dependences needed to know the upper bounds of loops
to resolve the equations. Bounds information may play a larger role with more advanced
induction recognition, but does not by itself improve deperdence testing.

Exact Integer Programming proved only 0.25% more accurate than the approximate
tests across the whole benchmark. These results point to improving the quality of the
information available at a potential dependence site as the most significant research goal in
parallelizing FORTRAN.

Synchronization (Sam Midkiff)

The Delta system is being used as the implementation tool for two experiments concern-
ing synchronization in shared memory multiprocessors. The first (partly implemented)
experiment compares the effectiveness of several code generation techniques for optimiz-
ing synchronization instructions[Jay88, Li85, MP87]. Each of the optimization methods
is being implemented in Delta. These ‘synchronization minimizers’ postprocess the result
of a simple DOACROSS pass[Cyt86]. DoOACROsS loops are partially parallel: they satisfy
dependences between different iterations by synchronizing the parallel processors so that
conflicting memory uses occur in their original serial order. Code has been prepared to in-
sert POST/WAIT, and Alliant FX ADVANCE/AWAIT[A1I85] synchronization instructions into
concurrent loops. Statistics will be collected on how much redundant synchronization is left
after using each optimization method.

The second experiment is still in the planning stage. Its goal is to compare several
synchronization technologies:

¢ Post and Wait,
o Advance and Await, and

 Process-based synchronization[SY88].
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Using Delta, FORTRAN programs will be analyzed to determine how many bits of synchro-
nization data are necessary to synchronize the programs using each of the methods. A
compiler generated timer will be used to simulate the potential speedup of each synchro-
nization method. This will let us study the tradeoffs between parallel speedup and the
complexity of synchronization hardware.

Critical Path Length (Paul Petersen)

Using the same powerful notion of instrumenting a program in order to simulate an alter-
native model of its execution, an experiment is nearing completion to measure a program'’s
execution time under ideal conditions. Like the MAXPAR simulation package[Che89], code
is being added to serial programs so that when executed, an assessment can be made of
their potential parallel execution times. So far the current work within Delta involved re-
producing some of the MAXPAR results as cross-validation exercise. It is notable that the
instrumentation approach made possible by Delta significantly lowers the time needed to
acquire simulation data for a program.

The overall goal of the experiment is to characterize the performance of a particular
run of a given program if only it could be compiled with perfect knowledge of the control
and data dependences that arise during the run, and perfectly scheduled for execution
by a parallel processor with no resource constraints. The metric we are most interested in
initially is the operation count along the critical path of actual data and control dependences
encountered in the run. By studying the wide gap between theoretically ideal and practically
achievable compilation of actual application codes, this experiment can help set priorities
and expose unforseen opportunities for optimization efforts.

Work in Progress
Several lines of development are now under consideration or already underway:

Data structures are being designed to represent the parallelized program, without losing
the original sequential semantics needed for most analyses of the program.

The loop transformations on perfect loop nests should probably be extended and unified
into a single step transformer along the lines suggested by [Ban90] and [WL90].

Modules will soon be needed to estimate the resources consumed by a transformed program
if it were to execute on a given machine architecture. Specifically memory references
should be counted and classified into different access patterns (e.g., vector write to
private memory, or synchronized reduction to shared memory).

Demonstrations
The Delta Program Manipulagion system was demonstrated outside CSRD
e at the Fall '90 DARPA contractors meeting in Chapel Hill, NC.

e the Supercomputing '90 Conference in New York City.
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The audiences for these demonstrations were gently introduced to the whole topic of auto-
matic program restructuring. On display were both the Delta project source code as seen
through the interactive cross reference, and the interactive “try-it-and-see” interface. Loop
Distribution, Interchange, Concurrentizing, Vectorizing and Stripmining were illustrated.
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A The Delta System

The following is a collection of brief descriptions for the majority of the functions currently
available in Delta. Every function which can be invoked from the top level of Delta has
been included; this has tended to mix high level and low level functions. To relieve this, the
functions are classified by topic and some discussion has been added outside the framework
of the function-by-function documentation.

A.1 Fortran Programs as Data
The Scanner

The conversion FORTRANT7 — Delta internal form is carried out by a separate program
called the ‘scanner’. For cach compilation unit in the FORTRAN source file, the scanner
produces one SETL map. To Delta, this map is the program. Its hierarchical structure
captures every significant semantic detail in the FORTRAN77 source code; allowing it to be
accessed based upon its meaning, rather than its lexical structure.

run_scanner := func( name, output );
Run the FORTRAN 77 to DELTA conversion program. Supply the input and output file
names to be used. -

read_program := func(file_name);
Given a file name, return the Delta form of the first compilation unit found there.

For the remainder of this report and throughout the Delta source code, the variable name
‘pgm’ always refers to a program object of the type produced by ‘read_program’.
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The Qexpression Table

Delta represents FORTRAN expressions as labelled trees. The scanner produces a separate
table (Qexpressions) containing the parse tree of each expression in the program. The
trees are formed with explicit links (indices into @expressions). Each tree node is a map
whose domain is a self-explanatory collection of field names, for example:

{C"op", "+"1, ["args", [123,124]1], ["type", "INTEGER"]}.

In this example, the left argument to ‘+’ is found at Qexpression[pgm] (123).

All expression nodes (except ’,’ operators) have a @type field for the data type of the
operator’s result. Currently the data frame size is kept only in the symbol table and not
propagated throughout the expression tree. All expression nodes have an Qop field. They
may also have fields called @name, Q@label, @value, or Qargs. The following table de-
scribes how to interpret the Qop field.

Qop =

INTEGER_CONSTANT Qvalue = integer
REAL_CONSTANT Qvalue = ‘real number’
STRING_CONSTANT Q@value = ‘characters’
LOGICAL_CONSTANT Qvalue = ‘.TRUE.’ or ‘.FALSE.’

HOLLERITH_CONSTANT Qvalue = ‘H length characters’

COMPLEX Qargs = [real, imaginary]
ARRAY_REF Qargs = [array ID, subscript list]
SUBSTRING Qargs = [base variable reference, substring bounds]

FUNCTION_CALL
INTRINSIC_CALL

Qargs = [function ID, parameter list]
Qargs = [intrinsic 1D, parameter list]

RETURN* Qargs = [label] (in CALL parameter lists)
omitted (in ENTRY parameter lists)
LABEL Q@label = ‘statement name’
10% (implied I/O unit or Format)
D Q@name = ‘identifier’
annotations: Qsubstituted = equivalent expression
@possible_values = {integers}
@value = integer
U+ U- NOT Qargs = [right]
EQ NE LT LE GT GE  Qargs = [left, right]
=/ x> // Qargs = [left, right]
+  * Qargs = [arg;, argy, ... , argy)
OR AND EQV NEQV Qargs = [arg;, argy, ... , arg,]
DO Qargs = [iolist, iterator] (for I/O implied DO loops only)
= @args = [index ID, iteration space ](for implied DO iterators only)
» Qargs = [a,rgl, argsz, ... , argn] (for parameter lists, subscript

lists, 1o lists, implied DO iter-

ation spaces, ...)

Explicit links from an expression to its subexpressions (@args) are very useful when a
modification must affect a subexpression without worrying about where it actually occurs
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in the program (or how many occurrences may be sharing the subexpression structure).

repl_expr := func(pgm, e, old_value, new_value);
Return a new copy of ‘pgm’ in which all occurrences in expression ‘e’ of the subex-
pression ‘old.value’ are (destructively) replaced by unique copies of subexpression
‘new_value’. The substitution is not recursive. It affects @substituted expressions,
but does not consider these when trying to match occurences of ‘old_value’. It modifies
expression ‘e’, without garbage collecting the subexpressions ‘old_value’, or copying ‘e’.

replace_variable_uses := func(pgm,stmt,prototype_map);

find_and_replace := func(pgm,e,prototype.map);
Return a new version of ‘pgm’ in which every 1D node that is in the domain of ‘proto-
type-map’, and in expression ‘e’ (or in any expression of ‘stmt’) is replaced by a copy
of its image in ‘prototype_map’. Identity maps are allowed.

This modification assumes there is no structure sharing and does not introduce any. IDs
in @substituted expressions are not affected. The @substituted, Qpossible_value,
and other annotation fields of replaced nodes are preserved.

copy-expression := func(pgm,e);
Duplicate expression ‘e’; return [new pgm, duplicate’s index in Qexpression].

make_expr_node := func(pgm, node_contents);
Return a new copy of ‘pgm’ and the index of a new expression therein which has the
given ‘node.contents’.

But, explicit links and two-part results are a nuisance when the expression must be reor-
ganized, simplified, or repeatedly copied. For these actions, Delta expression transformers
first ‘implode’ an expression, which makes a copy independent of the @expression table.
The imploded form, called an args_tree, replaces the pointers of the @args field with the
actual nodes to which they pointed. Args_trees are easier to manipulate because SETL au-
tomatically garbage collects unused nodes, and copies modified ones, and because they can
be modified independent of any particular expression table. A reverse process (‘exploding’)
embeds an entirely new copy of the expression tree within a given @expression table.

args_tree_implode_expression := func(pgm, e);
Extract an expression from the @expression table of ‘pgm’. Return a nested form of
the expression that is independent of the expression table.

explode_args_tree := func(pgm, ex);
Given a tree form expression, return a new copy of ‘pgm’ with the tree’s components
inserted into the expression table. Return [pgm, the index of the root table entry].

form_args_tree := func( op,’type, left, right );
Create a new ‘tree’ node.

SUB := func( left, right );

ADD := func( left, right );

MUL := func( left, right );
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DIV := func( left, right );
Create a new arithmetic node in args_tree form.

COMMA := func( args );
Create a new ‘,’ node for parameter lists, etc.

ARRAY := func( name, args );
Create a new ARRAY_REF node.

list_subscripts := func(pgm, ref);
Return a tuple of the subscript expression indices from an ARRAY_REF.

CST := func( val );
NEG := func( ex );
Create a constant node whose type is determined by the type of the argument.

result_type := func(op,left_type,right_type); ‘
Find the resulting type from the given binary operation.

IS_CST := func( ex );

IS_.ZERO := func( ex );
Determine if the expression tree node is a constant value.

COPY D := func( id_name, id_type );

MAKE_ID := func( pgm, id_-name );
Create an args_tree 1D node.

IFIX := func( child );
DYADIC._FN := func( {n, left, right );

ASSOC_FN := func( fn, left, right );
Create a new INTRINSIC_CALL tree node.

maximize_args_tuple := func( tuple );
Given a tuple of (non-negative) trees return the tree representation of the MAX over
the list.

side_effect_free := func(pgm,e);

side_effect_free_args_tree := func(ex);
Return true if the given expression has no side-effects (or is OM).

invariant_args_tree := func(ex, invar);
Given a side_effect free_args_tree ‘ex’, return true if all its free variables are in ‘invar’.

equal_expressions := func(pgm, p, q);
equal.args_tree := func( p, q );
Are the two given expressions/trees structurally equivalent?
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Algebraic simplification

simplify args_tree := func( ex );
Return an arithmetically equivalent expression tree created by applying the following
simplification transformations in the correct order.

coef_args_tree := func( ex, id );
Return a numeric coefficient of the variable ‘id’ in expression ‘ex’. If the coefficient is
not numeric then return OM.

all_variable_factors := func( ex );
Returns the set of variables that are contained in the formula of expression tree ‘ex’.

contains_set_args_tree := func( ex, varlist );
Returns the subset of variables in ‘var.list’ that are contained in the top-level formula
of expression tree ‘ex’.

extract_args_tree := func( ex, varlist );
Given ‘ex’ (a term or sum of terms) and a list of variable names, decompose ‘ex’ into
a mapping from the names onto either 0, or a term or sum of terms that mention the
variable.

variable_factors := func( ex );
Returns the set of variables found as factors of ‘ex’.

member_args_tree := func( ex, v );
Given an tree ‘ex’ which is either an identifier ‘v’ or a multiple thereof, return a subtree
of ‘ex’ equal to ‘v’, else OM.

take_from_args_tree := func( ex, id );
Return the coefficients of the identifier ‘id’ from the multiplicative expression ‘ex’.

combine_args_tree := func( ex );
Combine the coefficients of common terms and simplify.

dist_times_args_tree := func( args );

distribute_args_tree := func( ex );
Distribute “*’ over ‘4.

eval_func_args_tree := func( ex );
Return a simplified form of the INTRINSIC_CALL ‘ex’.

flatten_args_tree := func( ex );
Flatten the tree structure around associative operators.

fold args_tree := func( ex );
Combine constant arguments at every node. Use the @substituted anmotations to
replace ID nodes. Replace subtraction (X-Y) by the addition of the negation (X+=-1*Y).
Perform simple symbolic simplifications such as (1*X) — X, and (0%X) — 0.
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negate_args_tree := func( ex );
Given a tree that has recently been folded, multiply it by -1, in a way which leaves it
as fully folded.

The @statement table

ASSIGNMENT
@lhs!, @rhs!
DO @follow?
Q@index!

Qinit_exprl, @limit_expr!, @step._expr!
IF, ELSEIF Qexpr!

Qfollow?

ENDDO, ENDTHEN
efollow?

GOTO Qtarget?

ARITHMETIC_IF, COMPUTED_.GOTO, ASSIGNED_GOTO
Qexpr!

@label list? = [target(?, ...]
ASSIGN  @lhs!
@target2
READ, WRITE, PRINT, OPEN, CLOSE,
REWIND, BACKSPACE, ENDFILE, INQUIRE
@s_control = {['KEYWORD’, exprl], ...}
@io list!
STOP, PAUSE
Qexpr! 3
CALL, ENTRY
Q@routine = ‘identifier’

@parameters®
RETURN  Qexpr! 3
LABEL @label = integer ! = index into expression table.
? = ‘statement name’.
ENDIF 3

omitted in some cases.

Table 1: Fields in the Abstract Syntax Tree for each Statement type

The executable statements of a program are collected in the @statements map. To
describe the many characteristics of the different FORTRAN statement types, each statement
is represented by a labelled map. The following subfields appear in every statement:

Qst = ‘statement type’
@next = ‘name of the lexically next statement’

Table 1 lists all the FORTRANT77 statement types (@st) and the subfields used to capture
their syntax and sematics.
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Cross Reference, Flow Graph, Loop Nesting

One field provided by the scanner for some statement types helps Delta deduce the flow of
control for compound constructs:

Qfollow = name of the ‘other statement’ in a compound construct

For instance, DO/ENDDO statement pairs point to each other via the @follow field. For
IF, ELSEIF and ELSE statements, @follow points to the matching ELSE, ELSEIF, or ENDIF.
Each IF, ELSE and ELSEIF clause is ended by an ENDTHEN statement, whose @follow points
to the ENDIF that terminates the whole mess. All one-line logical IFs are converted to
IF/THEN /stmt/ENDTHEN /ENDIF sequences by the scanner. FORTRAN statement labels are
attached to separate statements, of type ‘LABEL’. They are just placeholders and branch
targets.

All other fields are derived information, added by Delta during its program setup phase:

setup := func(pgm);
Return a copy of ‘pgm’ annotated with the derived fields.

Q@in_refs = {indices of memory read expressions}
Qout_refs = {indices of memory write expressions }

Each Qexpression index in these sets is either an ID, an ARRAY_REF, or a SUBSTRING.
Q@in_refs and Qout_refs do not account for the ‘hidden’ side-effects of function and sub-
routine calls. These annotations are handled by the routines:

build_in_out_refs := func(pgm,s);

list_refs := func(pgm,s);
Add (list) @in_refs and Qout_refs expression sets to statement ‘s’.

add_refs_to_program := func(pgm);
Return a copy of ‘pgm’ where all statements have valid @in_refs and Qout_refs fields.

Qprev = ‘name of the lexically previous statement’

Of course, the program counter does not always flow into a statement from its @prev
statement, but so far every programmer who has written a low-level transformation has
erroneously assumed this at least once. These bugs are fixed, but this misconcept about
the @prev of a statement is subtle and insidious.

Qouter = ‘statement name’ of the innermost enclosing po loop.

Qouter is omitted for statements outside of loops. The Qouter field of a DO statement
names the next outer loop, not itself. The Qouter field of an ENDDO names the matching
DO.

@successors = {‘statement name’s to which control may flow}
@predecessors = {‘statement name’s from which control may arrive}

For example, most DO statements have two elements in @successors: the first statement
in the body of the loop and the statement following the matching ENDDO.
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flow_successors := func(pgm, stmt);
Return the set of statement names of ‘pgm’ to which control may flow from ‘stmt’.

flow_predecessors := func(pgm, stmt);
Return the set of statement names of ‘pgm’ from which control may flow into ‘stmt’.
This requires o(#statements[pgm]) time to compute, so use the precomputed @pre-
decessors field wherever possible.

A recurring issue in Delta is how much of the rich internal program representation must be
rebuilt from scratch after each transformation. The flow graph is one example where coding
complexity in the transformations must be traded off against the high cost of regenerating
(via add flow_graph ) all the flow linkages in a program. The routine update flow_info is one
answer to the trade off. It works on a bounded section of the program provided that any
explicit (i.e. non-default) links crossing the boundary are already correct. These conditions
can be met by most transformations without sacrificing clarity or code space.

add_flow_graph := func (pgm);
Return a copy of ‘pgm’ where each statement has been annotated with: @successors,
Q@predecessors, and Qprev ignoring any existing values of those fields. The result
also includes a @final_statement field that points to the lexically last statement.

update_flow_info := func (pgm, start_stmt, end_stmt);
Return a copy of ‘pgm’ where the @predecessors, @successors, and Qouter fields
have been updated over the given range of statements (connected by @next). State-
ments that are properly linked successors of statements in this range have their pre-
decessor links updated to reflect changes within the range. The same is not true of
properly linked predecessors, so beware of ranges that follow ELSEs and ENDIFs,

A.2 Analysis and Transformation
Data Dependence

Each pair of conflicting storage references is represented by a directed arc in a data
dependence graph that indicates which reference is executed first in the original se-
quential program. The function dependence.graph() generates a complete graph for a
nest of loops and saves the result in a program annotation (@loop_info). From this,
dependence_loop_info() can derive a graph for any inner loop of the nest.

dependence_graph := func(pgm, doloop);
Build the dependence graph for the given loop. Return a set of tuples, whose elements
are dependences. Each dependence has the following contents, in order:

. source statement

. sink statement

source atom expression number

sink atom expression number

variable causing the dependence

I I

direction vector
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7. dependence type (‘I’=flow, ‘a’=anti, ‘o’=output)

derive_dependence := func( pgm, graph, s2 );
Given a dependence ‘graph’ for loop s1 return the dependence graph for loop ‘s2’ which
is a subloop of sl.

dependence_loop_info := func( pgm, sl );
Annotate the @loop_info database with the dependence graph for loop ‘s1’. Compute
the graph from an enclosing loop or compute it directly for the outermost loop.

print_graph := func(pgm, 1, var_id);
Print out the dependence graph for a loop nicely. Uses the dependence graph in
Qloop-info. If var_id is given, only print dependences for that variable.

dependences := func(pgm, sl, s2, doloop);
Build the dependences between the two given statements.

intersect := func(pgm, sl, s3_refs, s2, s2_refs, dirs, dep_type);
Intersect the two given reference lists and return a dependence for each intersection
and each element of the set of directions given.

plausible_directions := func(pgm, sl, s2, doloop);
Return a set of plausible direction vectors for statements S1 and S2. Each direction
vector is a tuple with the first element being the outermost common loop, and each

element being a string containing one or more of the characters ‘=, ¢j’, or *;.

ignore_non_equal := func( graph, ignore );
Ignore a set of variables for which non-‘=" directions should be excluded from the
graph, e.g. localizable scalars.

The computation-intensive part of data dependence analysis decides whether a sys-
tem of equations (the equated subscripts of two array accesses) has an integer solution
in a given region of Z™ (the iteration space of the surrounding loops). Integer Program-
ming techniques[SM89] can answer this question accurately. However, faster approximate
techniques[Ban88] are thought to be more practical. An approximate test will sometimes
predict a non-existant solution to the system of equations, but conservative use of the test
results never leads to incorrect code, just to missed opportunities for optimization.

same_test := func(pgm, sl, el, s2, e2, dirs, dep_type);

dd-tests := func(pgm, sl, expl, s2, exp2, dirs, proto);
This routine is called only if the lexical names of refl and ref2 are identical. It returns
false if it can be shown that a dependence does not exist, or true otherwise.

nonlinear_test := func( pgm, sl, expl, s2, exp2, dirs );
This test counts the number of non-linear potential dependences.

dd_tree_tests := func(pgm, sl, expl, s2, exp2, dir, proto);
Expand the direction-vector tree until a true/false result is found. If the result at the
current node is unspecified then recurse down.
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dd_simple_tests := func(pgm, sl, expl, s2, exp2, dirs, dir_count);

constant_dd_test := func( pgm, sl, expl, s2, exp2, dirs );

ged_dd_test := func( pgm, sl, expl, s2, exp2, dirs );
Examine the @simple_dd_tests options and invoke each routine in sequence until one
of the tests either returns true or false.

dd_complex_tests := func(pgm, sl, expl, s2, exp2, dir, dir_count);

infinity _dd_test := func( pgm, sl, expl, s2, exp2, dir );

banerjee_dd_test := func( pgm, sl1, expl, s2, exp2, dir );

trapazoid_dd_test := func( pgm, sl, expl, s2, exp2, dir );

int_prog_dd_test := func( pgm, sl, expl, s2, exp2, dir );

display_dd_result := func( name, expl, exp2, dir );
Examine the @complex_dd.tests options and invoke each routine in sequence until
one of the tests either returns true or false.

jayasimha test := func( pgm, sl, expl, s2, exp2, dirs );
This test is to locate subscript pairs in which all coefficients are integral, but some are
different.

exact_subscript_test := func(pgm, sl, expl, s2, exp2, directions);
Invoke the exact linear programming dependence test

trapazoid._direction_test := func(pgm, sl, ex1, s2, ex2, dirs);
trapazoid._function_bounds := func(pgm, sl, ex1);

Find the function bounds for expression ‘ex1’ at statements ‘s1’. The value OM is
returned upon error.

banerjee_trapazoid := func(pgm, sl, ex1, s2, ex2);
Determine the function bounds for two expressions ‘ex1’ and ‘ex2’ in statements ‘s1’
and ‘s2’. If the constant term noes not lie between the computed bound then no
dependence is possible.

banerjee_quadrant := func(pgm, sl, ex1, s2, ex2, directions);
Banerjee_quadrant is called if both subscript expressions are linear functions of induc-
tion variables. This routine will only work properly when all coeficients are integers,
and the loop has been normalized.

infinity test := func(pgm, sl, ex1, s2, ex2, directions);
The infinity test is called if both subscript expressions are linear functions of induction
variables. This routine will only work properly when all coeficients are integers, and
the step on the loops are all positive.

banerjee_inequality := func(pgm, s, ex1, s2, ex2, directions);
Banerjee_inequality is called if both subscript expressions are linear functions of induc-
tion variables. This routine will only work properly when all coeficients are integers,

and all loop limits are integers. It also assumes that the loop has been normalized and
has a step of 1.
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In posing the integer programming problem, unknowns which are invariant in some
surrounding loops are symbolically cancelled. The function cancel_common_terms(ex1,
ex2, vars) eliminates variables that are additive in both subscript expressions (ex1, ex2)
and also belong to the invariant set (vars) of a given loop. The particular loop to use is
the outermost one in which the conflicting references may occur in different iterations.

select_invariant := func( pgm, common, dir );

select_invariant_dirs := func( pgm, common, dirs );
Select the set of invariant variables based on the current direction vector. Given a set
of direction vectors, return the most restrictive set of invariant variables.

cancel_common_terms := func( exl, ex2, invar );
Given two expressions ‘ex1’ and ‘ex2’, return a tuple of the expressions with all common
additive terms in ‘invar’ canceled.

unknown_test := func(pgm, sl, expl, s2, exp2, dirs, dir_count);
Test the subscript pair to see if any direction vector in ‘dirs’ supports a large enough
invariant set to break an ‘unknown’ test result.

symbolic_lower_bound := func( pgm, s, id, indx );

symbolic_upper_bound := func( pgm, s, id, indx );
Given DoOloop ‘s’ in ‘pgm’ and the indices ‘indx’ of the enclosing poloops, return a map
representing a linear function of indx that computes either the lower/upper bound of
8, or, if ‘id’ is set, id — bound. If the function is nonlinear and the @1loop_info contains
a guess of s’s bound, use the guess in place of the actual bound.

A.3 Statement Manipulation

list_stmts := func(pgm);
Return a list of all of the statements in the program

stmts_of_type := func(pgm,st);
Return a tuple (ordered by the @next links) of all statements of the given types; ‘st’
can be either a string or a set of strings.

reorder.statements := func(pgm,start_block, end_block, new_order);
Given a range of statements and a new order, rearrange the @next and @prev links to
put them in that order. Don’t update the flow graph or @Qouter fields.

connect_two_statements := func(pgm,first_stmt,second_stmt);
Set the @next and @prev fields of two statements to point to each other.

delete_stmt := func(pgm,s);.
Disconnect a statement from the lexical and flow graphs of the program. The statement
remains in the statement table; its (invalid) links are unchanged. This is not sufficient
to delete pieces of a compound construct (DO, IF, GOTO/LABEL, ...)

add_after_stmt := func(pgm, preceding stmt, new_stmt);
Insert a statement after another one.
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make_assignment _stmt := func(pgm, p, q);
Create an assignment statement ‘p = q’. Don’t link it into the program.

Procedure CALLs

The following utilities are concerned with CALL statements and the various forms of entry
points into FORTRAN compilation units. The most significant capability of Delta with
respect to interprocedural analysis is its inline expansion of subroutine calls. Given a
program block, a subroutine, and a statement in the program block that calls the subroutine,
the inline expander replaces the call statement with the body of the called subroutine. It
changes the variable names used by the subroutine, so that the expanded program block
is functionally equivalent to the origrinal program block. This facility is expected to prove
useful in parallelizing loops where the presence of a subroutine call inhibits parallelization.
At a higher level of abstraction, it eliminates some of the need for interprocedural analysis
by destroying subroutine calls.

make_call_stmt := func(pgm, name, p);
Create a subroutine call statement, where p is a *,’ node for the parameters. Don’t
link it into the program.

call_stmts := func(pgm);
Builds 2 map from routine names onto non-empty sets of statements where they are
CALLed.

function_calls := func(pgm);
Find all function calls and return a mapping pointing to the statements wherein they
occur.

inline_expand := func(pgml, call stmt, pgm2, called_routine);
Expand the subroutine CALL at call_stmt in pgm1 using the body of the called routine
(a named entry point) from pgm2.

routine_name := func(pgm);
Find the routine name of the lexically first ENTRY point, if any if none, return OM.
Let the caller convert it to ‘MAIN’ or whatever!

entry_points := func(pgm);
Find all ENTRY points of a given program. Return a map from routine name to
ENTRY statement tag for that name.

float_entry_points := func(pgm);
Move all ENTRY statements to the top of the routine. Follow each one with a
GOTO/LABEL pair to its original location. This produces a unique empty section of
code following each entry point. Lexical ordering of ENTRYS is preserved, therefore
the routine name is not changed.

move ENTRY _after := func(pgm, dest, entry);
Move a statement of type ENTRY to after dest.
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Branching and Conditionals

make_goto_stmt := func(rpgm, st);
Create an UNCONDITIONAL_GOTO statement that branches to statement st. Don’t
link it into the program.

make_label_stmt := func(pgm, 1b);
Create a LABEL statement with label Ib. Don’t link it into the program.

numeric_labels_used_in := func(pgm);
Find all numeric labels used in pgm.

delete_trivial_gotos := func (pgm);
Remove UNCONDITIONAL_GOTOs that go to the next statement. Remove the
LABEL there too if possible.

remove_gotos := func(pgm);
Change any eligible IF-GOTO statements in the program to block IFs. Currently
using an ad hoc approach; future home of full flow normalization|]Amm90].

convert_arithmetic_if := func(pgm,stmts,s);
Try to convert an arithmetic IF into an IF-GOTO-ENDTHEN-ENDIF. This is possible
if two of the target labels are the same, and if one of the targets is the following
statement. Stmts is the @statements section of pgm separated out for convenience.
Return the modified program and statements and the FIRST statement in the resulting
sequence of statements after converting the IF if successful. Otherwise, just return the
arguments unchanged.

invert_if_condition := func(pgm,if stmt);
Invert the condition of the IF statement in the indicated statement.

split_ELSEIF := func (pgm, old_elseif);
Convert an ELSE IF clause into the ELSE clause of a new outer IF statement.

delete_IF := func( pgm, IF stmt);
Remove an IF/ELSE/ENDIF structure. Connect the THEN and ELSE clauses as
in-line code. Caller is responsible for preserving program semantics!

DO Loops

list_do_loops := func(pgm);
Return a tuple of [do-start, do-end] pairs

display_do_loops := func(pgm,extrastuff);
Write out the DO and ENDDO statements in the program

list_loop_body := func(pgm,dostmt);
Return a tuple listing the statements in the given DO loop
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enclosing loops := func(pgm,s);
Build a tuple giving the loops enclosing the given statement, with the outermost loop
first and innermost last. Return an empty tuple if there are no loops around this
statement.

common_oops := func(pgm,sl,s2);
Return a tuple of all DO loops that enclose both statements

loop_index := func(pgm,l);
Return the name of the index variable for the given loop.

delete_loop := func(pgm,dostmt);
Remove a DO loop from around a set of statements. Reconnect the lexical and
flow graphs of the program. The DO and ENDDO statements are deleted from the
Q@statement and @loop_info tables. The Qouter fields are updated.

make_do_loop := func (pgm, after, index, init, limit, step, before);
Make a new DO/ENDDO statement pair. Put the DO after ‘after’, giving it the index
variable ‘index’ and bounds formed from the args_trees ‘init’, ‘limit’, and ‘step’. Put
the ENDDO before ‘before’. Statements between ‘after’ and ‘before’ (if any) form the
body of the loop. Their @outer field is updated, but their @loop_info is not (yet)
affected.

initialize local_variable := func(pgm, s, v, expr);
Create a statement or loop to initialize a local variable

A.4 Preconditioning
Control Flow

control_ flow_graph := func( pgm, stmt list );
Return a control flow graph for the list of statements contained in stmtlist. The value
is a mapping of statements onto a set of arcs.

dominates := func( idom, si, s2 );
Return true iff ‘s1’ dominates ‘s2’.

all immediate_dominators := func( pgm );

allimmediate_postdominators := func( pgm );
Returns a mapping from every statement in the program to its immediate (post)dom-
inator statement.

loop_immediate_dominators := func( pgm, doloop );

loop_immediate_postdominators := func( pgm, doloop );

Returns a mapping from every statement in doloop to its immediate (post)dominator
statement.

immediate_dominators := func( stmt.list, CFG, R_.CFG );



immediate_postdominators := func( stmtJlist, CFG, R_.CFG );
Returns a mapping from statements in ‘stmtlist’ to their immediate dominator state-
ment: the closest statement that appears on every path from the entry to the state-
ment. Tarjan’s flow dominator algorithm is used [LT79].

In the map, idom(first stmtlist) = first stmtlist is added to make the resulting map
everywhere defined.

dominance_frontier := func( idom, root, CFG );

control_dependence := func( pgm, stmtlist );
Given an immediate dominator map and the ‘root’ of its corresponding control flow
graph, (or a ‘pgm’ from which a postdominator map can be generated for a particular
‘stmt.list’) this returns a map from each statement X to all statements ¥ such that X
(post)dominates a (successor) predecessor of ¥ but does not strictly (post)dominate
Y. This algorithm forms part of PTRAN’s Static Single Assignment Form conversion
described in [CFR*88].

invert_graph := func( graph );
Invert a graph represented as a mapping of items onto sets of items.

strongly_connected _components := func(stmts,graph,l);
Given a set of statements and a graph connecting them, return the strongly-connected
components as a set of disjoint subsets of ‘stmts’. For now ‘graph’ is represented as
a set of ordered pairs representing the directed edges between statements. Tarjan’s
algorithm [Eve] is used.

build_pi_blocks := func(pgm, 1);
Build the strongly-connected components (aka pi-blocks) for loop ‘I’

topologically _sort := func(nodes,edges);
Given node and edge sets of a graph, return a tuple of nodes in an arbitrary total
order which satisfies the partial ordering induced by the edge relation. The edge set
must not have any cycles involving members of ‘nodes’.

build_all_prior_sets := func(pgm);
Add prior sets as @prior to each DO statement in the program

new_prior := func(pgm, sl, s2, 1);
Do the prior test for two statements with respect to a loop. i.e. return true if there

is a flow path from the first statement to the second within a single iteration of the
loop. Assume that the prior sets are attached to the loop header.

Reducing irrelevance .

dead.code_elimination := func(pgm);

Eliminate dead (i.e. unused) assignment statements in ‘pgm’. Remove IFs and DOs
that become empty along the way.
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delete_ELSEIF := func(pgm,ELSEIF stmt);
Deadcode removal of ENDTHEN / ELSEIF pairs. Assumes ELSEIF does not con-
trol any meaningful statements. Does not remove any ELSE parts of the ELSEIF
construction. Semantically too wierd for any use besides deadcode elimination.

unreachable_code_elimination := func(pgm);
Delete statements that cannot be reached from the @initial_statement via @suc-
cessor links and that are not needed for the lexical integrity of the program. Also
delete statements disconnected from the lexical graph. Assumes that the reachable set
is a subset of the statements connected by @next and @prev links in the lexical graph.
Assumes (ANSI F77) that there are no branches into DO loops, or into IF, ELSE, or
ELSEIF blocks.

Induction

induction_variables := func(pgm, doloop);
Find induction variables in a loop. Replace uses of the variable with the equivalent
value expressed as a tuple of expressions, where the first element is the constant term,
the second the increment due to the inner loop, the next the increment due to the
next inner loop, etc.

test_for_increment := func(pgm,s,loop_invariants);
See if the given statement is an increment. If it is, return a tuple with the the lhs
variable name and the set of rhs terms other than the lhs variable. Return OM if not
an increment.

not_always_executed := func(pgm, stmt, loop_body);
Return TRUE if the given statement isn’t executed exactly once every time through
the given loop.

substitute_induction_variables := func(pgm, I);
Given a set of induction variable assignments for a loop, substitute uses of the variables
in loop I with the equivalent value in terms of the (normalized) loop index variable.
Return the modified program and a count of variables removed.

substitute_all_induction_variables := func(pgm);
Call substitute_induction_variables on each loop of the program.

induction_loop_info := func( pgm, s1 );
Annotate the @loop_info database with the induction variables for loop ‘s1’.

Invariance

invariant_expression := func(pgm, e, invariants);
Return true if all of the names that appear in the given expression are in the given
set. The expression is then invariant iff all the function calls and intrinsic calls are
deterministic (checks for this not included).

loop_invariant_variables := func(pgm,l);
Return a set of variable names that are not modified in the given loop
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invariant_loop_info := func( pgm, sl );
Annotate the @loop.info database with the invariant variables for loop ‘sl’.

Canonical iteration space

normalize_loop := func(pgm, doloop);
To normalize a loop, subtract the lower-bound from the upper and lower bounds,
rename the loop index variable to a new name, and subst all of the occurences of the
loop index variable by the new formula. Locate all exits from the loop, and restore
the index value.

rename_do_loop_index := func(pgm, doloop, index, repl);
Find all exit paths from loop ‘doloop’ and make sure that the line index = new_value
is added to each.

normalize_all loops := func(pgm);
Normalize all of the loops in the program

Forward substitution

propagate_constants := func(pgm);

ok_to_substitute := func(pgm, e, OK_names);
Do forward substitution of scalar variables throughout pgm. Attach a subtree to each
substitutable expression giving either an equivalent expression tree (in @substituted)
or a set of possible constant values (in @possible_values). Expressions are.substituted
only if they are free of function calls and array references.

evaluate_scalar_assignment := func(pgm,expr, stmt_IN, DEF values);
Try to evaluate the expression given the scalar definitions that reach it. If a non-
constant value reaches any of the rhs exprs, return OM, otherwise return the set of
possible values to be attached to the statement. Return an empty set if evaluation

will always be impossible. DEF _values is a mapping of DEFs to the set of values for
that def.

Alternative: use a simple evaluator that takes a binding environment as parameter,
collect possible values from the evaluation in all possible binding combinations for the
expression’s input variables.

evaluate_integer_expression := func(pgm,e);
Try to evaluate an expression to an integer value. Return OM if it is impossible.

clean_expressions := func(pgm);
Remove the propagated constants and expressions from pgm.
Scalar expansion

localizable_scalars := func(pgm,l);

Compute the set of scalars that could be localized to the given loop. Assumes that
in_refs and out_refs are correct.
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localizable_loop_info := func( pgm, sl );
Annotate the @loop_info database with the localizable variables for loop ‘s1’.

expand_scalars := func(pgm,names,enclosingloops);
Expand each of a set of scalars into arrays. Add one dimension for each loop in the
enclosing loops tuple (which is ordered with the outermost loop to be expanded first).
Dimension it as (*,*, ...,*) (fill in the bounds later). Assume that the loops are
normalized, and use the inner loop as the leftmost subscript.

A.5 Restructuring
Loop interchange

permutation_to_swaps := func(permutation);

Given a tuple representing a permutation, e.g. [3,1,2], return a tuple of ordered pairs
giving exchanges of adjacent elements to make in order to change [1,2,3] into that
permutation. For [3,1,2], one possible sequence of exchanges is [[2,3], [1,2]].
The strategy taken is to swap the element that goes to the last position into place (i.e.
3 in the example is swapped with 2, then 2 is swapped with 1 to bring it to its final
position), then repeat as necessary for the second-to-last, ...Note that this is o(n?),
like a bubble sort (which it strongly resembles).

permute_loops := func(pgm, old_order, new_order);
Given an old outside-in order for a set of perfectly nested loops and a new order, return
a copy of ‘pgm’ in which the loop nest is permuted into the new order.

interchange_loops := func(pgm,sl,s2);
Return a copy of ‘pgm’ in which the perfectly-nested loops ‘s1’ and ‘s2’ are inter-
changed.

legal_to_interchange := func(pgm,outer_do,inner_do);
Test whether interchanging the given loops would violate a data or control dependence.

interchange := func(pgm, 11, 12);
Cover function for interchange loops that first checks to see if it is legal to interchange
the loops.

Loop distribution

distribute loop := func(pgm,l,break after);
Break a loop ‘I’ in two after one of its statements ‘break_after’.

smash_loop := func(pgm,doloop);
Build the piblocks for a loop, then use them to smash the loops into tiny pieces.
Start by smashing the inner loops recursively (therefore this is inside-out distribution).
Return the modified program and the last resulting ENDDO.
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Stripmining{Lov77]

strip_vertical_inner := func(pgm, DO loop, stripsize);

strip_vertical_outer := func(pgm, DOloop, stripsize);

strip_horizontal_inner := func(pgm, DOloop, stripsize);

strip_horizontal outer := func(pgm, DOloop, stripsize);

stripmine := func(pgm, DOloop, length);
Return a version of ‘pgm’ and the statement tags of two perfectly nested loops which
together control the iteration space of the given ‘poloop’. The iteration space is split
into strips of a positive integer size computable by the expression ‘stripsize’ (or given
by the constant ‘length’). The bounds expressions of ‘Doloop’ should be invariant in
the loop.

This technique is in widespread use by vectorizers, concurrentizers, and ordinary compilers
that attempt to improve data locality. For example in strip_verticaliinner, the inner loop
carries the original loop’s index variable over ‘strips’ of a given or computable size using
the same stride as the original loop. The new outer loop schedules enough strips to cover
the original iteration space.

Vectorizing and Concurrentizing

tiny_vectorizer := func(pgm);
Return a version of ‘pgm’ in which loops are marked as DOALL or SUM based on a
small amount of dependence pattern recognition.

trivial_subscript_test := func(pgm);
Look at all of the dependences in @loop_info[pgm]. Eliminate any which have: A ¢}
in some direction vector position. A source and sink subscripted by the index for the
corresponding loop. Return the reduced dependence graph.

trivially_parallel := func(pgm,l);
Return true if there are no non-‘=" dependence arcs in the graph for this loop.

trivial_ summation := func(pgm,l);
See if this loop is a sum of trivial form, e.g. scalar = scalar + ‘invariant stuff’

Instrumentation

instrument_all_outer_loops := func( pgm );
Return a copy of ‘pgm’ in which each outermost loop is bracketted by a pair of sub-
routine calls that can collect and identify timings of individual loop nests.

instrument_do_loop := funé( pgm, doloop );

Return a copy of ‘pgm’ in which the ‘doloop’ is bracketted by calls to DOSENTRY and
DOSEXIT with the statement tag of the loop as their argument.

critical_path_program := func( pgm );
Return a version of ‘pgm’ instrumented so that executing it serially will measure the
longest critical path of data or control dependence for that program run.
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Output

write_program := func(pgm);
display_program := func(pgm);
write_program_to_file := func(pgm, fname);

write_program_fd := func(pgm, all.info, fd);
Write out a program unit with the given name.

write_stmt _string := func(string, indent, heading_width, fd);
Write out a string as a statement with indentation level ‘indent’ and with continuation
lines preceded by ‘heading.width’ spaces. Analyze while printing to see if continuation
lines can be indented safely. Indent level should not include the initial 6 columns. also,
the initial line will not have indentation or headings printed by this program; that is
the responsibility of the caller.

type_decls := func(pgm, fd);
parameter_decls := func(pgm, fd);
format_dim := func(pgm, dim);
array_decls := func(pgm, fd);
common_decls := func(pgm, fd);
equivalence_decls := func(pgm, fd);
data_decls := func(pgm, fd);
save_decls := func(pgm, fd);

external_decls := func(pgm, fd);
Produce the declarative statements that establish the evironment for ‘pgm’s execution.
FORTRANT77 output syntax only!

write_stmt := func(pgm, stmt, all_info, marking);

write_stmt_fd := func(pgm, stmt, all.info, marking, {d);
Write out executable statement ‘stmt’. Return the next statement, or OM if none.
Print extra stuff if ‘alliinfo’ is set, prepend ‘marking’.

write_all_stmts := func(pgm, initial, final, all_info, {d);
Write out all the statements in the given set that are in the chain starting with ‘initial’
connected by @next, and ending with ‘final’.

Y

write_do_loop := func(pgm, dostmt);

write_do_loop_fd := func(pgm, do_stmt, fd);
Write out one do loop.

statement _label_value := func(pgm,s);
Return a string form of the numeric statement label for statement ‘s’.

write_format_stmts := func(pgm, fd);
Write out any format statements in the program.

format_expr := func(pgm, e, give_values);
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write_expr := func(pgm, e, give_values);

writeln_expr := func(pgm, e, give_values);
Convert an expression tree into a string for output. Print out an expression tree. Write
out an expression labelled by its number followed by a newline.

new_identifier := func(pgm, id);

create_identifier := func(pgm, base_id, id_type);
create_simple_variable := func( pgm, name, type, size );
new _critical_identifier := func(pgm, id);

make_label := func(prefix);
Serve different needs for the production of new names for compiler generated compo-
nents of the program.

A.6 SETL Utilities

integer_to_string := func(n);
Return the character string representation of the integer ‘n’.

string_to_integer := func(s);
Return the character string representation of the integer ‘n’.

misc_to_string := func(int_or_string);
Given a parameter that is an integer or a string, return the string equivalent.

pad_string := func(s,length);
left_pad_string := func(s,length);
Given a string and a minimum length, pad it with blanks to that length if necessary.

compact_object := func(obj);
Returns its argument with structure sharing among leaf nodes.

negp := func( x );
posp := func( x );

Return the negative/positive part of an integer.
iINEG := func( a );
1ADD := func( a, b );
iSUB := func( a, b );
iMUL := func( a, b );

Operate on the arguments taking care of infinities and OM.
ged := func( a, b );
gedn = func( list );

Compute the GCD of a pair (list) of integers.
divides := func( a, b );

Determine if a divides b.

34



between := func(a, b, ¢);
Determine if the relation [ a j= b j= c ] is true.

tuple_reverse := func( x );
Reverse the order of elements in a tuple.

tuple_index := func( x, T );
Return the index of the first occurence of ‘x’ in tuple ‘T’, or OM if none.

laminate := func(listl, list2);
Laminate two tuples into a tuple of tuples.

split_tuple := func( tpl, test );
Split a tuple into two parts, one which passes the test and the other not.

list_strings := func(separator, strings);
Concatenate a set or tuple of strings, separate them with ‘separator’.

commas_between := func(list);
Concatenate strings in list, separating them by ¢, .

limit_tuple_length := func( list, limit );
Given a tuple of strings return a tuple of tuples which are all less than the limit when
separated by commas.
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